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Key Points: 7 

• A differentiable model of snow transport constrains the minimum seasonal flux required 8 

to explain lidar-based snow accumulation patterns. 9 

• Extensive deep snow accumulation (3-9 times local snowfall, >0.01 km2) requires mass-10 

weighted mean contributing distances of 0.3 to 2.1 km. 11 

• Interbasin snow transport can double the catchment area of first-order streams and can 12 

contribute 7% of water yield at the 100 km2 scale. 13 
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Abstract 15 

The farther you roll a snowball, the more snow is accumulated. How far must you roll a 16 

snowball to create a major alpine snow drift? From this analogy, I develop a framework using 17 

airborne lidar data and differentiable modeling to constrain the minimum seasonal transport 18 

flux needed to explain alpine snow accumulation patterns. In the Wind River Range, Wyoming, 19 

100 m grid cells with 3-6 m SWE must accumulate snowfall over mass-weighted mean 20 

contributing distances of 0.3 to 2.1 km, and upwind source areas can exceed 3 km2. Interbasin 21 

snow transport augments local snowfall by at least 23% in a first-order stream catchment (2 22 

km2), with the upwind “snowshed” doubling the effective catchment area. Snow imported 23 

across topographic divides is equivalent to 7% of annual streamflow in a 125 km2 watershed. 24 

Kilometer-scale snow transport mediates alpine hydrology by permitting deep drift formation 25 

and augmenting the catchment water balance. 26 

Plain Language Summary 27 

Deep snow drifts represent a large amount of water concentrated into a small area, in contrast 28 

to precipitation, which is spatially smoother. Wind and avalanches can transport snow in 29 

mountain environments, concentrating relatively homogeneous snowfall into deep drifts. 30 

Snowfall must be accumulated over a relatively large area, and travel a long distance, to 31 

account for the amount of water stored in deep snow accumulation zones. I estimate a lower 32 

bound on snow transport with a new method that combines machine learning, snow modeling, 33 

and remote sensing. The results show that snowfall must accumulate over several kilometers to 34 

create observed drift patterns. Additionally, large amounts of snow can blow across mountain 35 

ridges, which has the effect of importing extra precipitation into downwind watersheds. 36 

  37 
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1 Introduction 38 

Mountain snowpacks are a global water resource (Viviroli et al., 2007; Li et al., 2017), 39 

and the spatial distribution of snow mediates streamflow, soil moisture, and ecohydrology 40 

(Luce et al., 1998; Litaor et al., 2008; Williams et al., 2009; Wigmore & Molotch, 2024). 41 

Snowpack patterns are notoriously challenging to quantify (Dozier et al., 2016) due to process 42 

complexity (e.g., wind turbulence: Musselman et al., 2015) and the 108 range of relevant scales 43 

(Sturm, 2015). 44 

Processes controlling the deposition and redistribution of alpine snow (Figure 1) are 45 

intensely studied at the scale of individual ridges and small catchments (e.g., Hiemstra et al., 46 

2006; Lehning et al., 2008; Farinotti et al., 2010; Mott et al., 2010; Naaim-Bouvet et al., 2010; 47 

Mott et al., 2014; Walter et al., 2020). However, the scale-emergent effects of snow transport 48 

are more newly explored (Marsh et al., 2024; Quéno et al., 2024). Landscape-scale simulations 49 

commonly assume sub-kilometer fetch distances with suspension capped ~5 m above ground 50 

(Pomeroy et al., 1993; Marsh et al., 2020a). However, some regions exhibit multi-kilometer 51 

fetch distances (Figure 1A) with snow plumes extending hundreds of meters (Figure 1B). Some 52 

models can produce plumes (Groot Zwaaftink et al., 2011), but the attendant high-resolution 53 

wind fields complicate large-scale applications (Mott & Lehning, 2010; Schneiderbauer & 54 

Prokop 2011). Most models do not track snow, with the exception of Lagrangian particle 55 

tracking of preferential deposition (Wang & Huang, 2016). 56 

The contributing distances and source areas of snow drifts have been studied for 57 

decades (Adok, 1977), but typically not in alpine environments. Early snow fence studies 58 

suggest contributing distances of ~1-3 km (Komarov, 1954; Tabler, 1971). From semi-empirical 59 

sublimation equations, Tabler and Schmidt (1973) infer a transport limit of 457-1421 m, 60 

sensitive to wind speed (assumed 12 m/s) and particle size. Snow accumulated from extensive 61 

alpine plateaus clearly contributes to “drift glaciers” (Olyphant, 1985; Hoffman et al., 2007; 62 

McGrath, 2022). Outcalt and MacPhail (1965) estimate that a ~0.1 km2 drift glacier could collect 63 

snow from a ~1.3 km2 source area by visual delimitation of topography and treeline. However, 64 

few if any studies have attempted to map drift source areas in comparable environments over 65 

the past 60 years. 66 

Novel methods are needed to learn from patterns in remotely sensed snow data 67 

(Dozier, 2011; Sturm, 2015). I leverage differentiable modeling (Shen et al., 2023) to learn the 68 

fraction of snow exported from grid cells to their downwind neighbors (Figure 1). By tracking 69 

snow parcels through the trained model, I address two questions: (1) what contributing 70 

distances and source areas are necessary to explain alpine snow accumulation patterns, and (2) 71 

how might snow transport across topographic divides influence the catchment water balance? 72 
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 73 

Figure 1. Conceptual model and study area photos. Snow transport processes are reduced to 74 

the export fraction between cells. By analogy, a “snowball” accumulates snow from areas with 75 

high export fractions and deposits snow in areas with low export fractions. 76 

  77 
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2 Methodology 78 

In a three-part framework (Figure S2), I first estimate local snowfall and net 79 

accumulation with remote sensing and a process-based model. Second, I constrain snow 80 

transport by learning export fractions between grid cells. Third, I track snow parcels through 81 

the transport model. 82 

2.1 Study Area and Data 83 

I demonstrate this method in the Wind River Range, Wyoming (WRR). Anderson (2002) 84 

uses the WRR as the type locality for alpine plateau surfaces, a feature of mountain ranges 85 

globally (Calvet et al., 2015). Multi-kilometer wind fetch distances on these summit plateaus 86 

(Figure 1A) can produce deep drifts that mediate glaciation and streamflow (Boardman et al., in 87 

prep.). 88 

Airborne lidar and hyperspectral data were acquired in the WRR on May 31, 2024, by 89 

Airborne Snow Observatories (ASO: Painter et al., 2016) in conjunction with backcountry 90 

fieldwork to constrain density variations (Boardman et al., in prep.). The final snow water 91 

equivalent (SWE) map is aggregated to 100 m resolution to highlight landscape-scale patterns, 92 

and an area outside lidar coverage is imputed (Figure S1, analogous to Appendix B of Boardman 93 

et al., in prep.). 94 

2.2 Snow Modeling 95 

The lidar-based “reference SWE map” reflects accumulation as well as patterns of 96 

interception, melt, and sublimation. A simple snow mass and energy balance model such as the 97 

two-layer snowpack sub-model of the Distributed Hydrology Soil Vegetation Model (DHSVM) 98 

can account for many of these processes and estimate seasonal accumulation (Wigmosta et al., 99 

1994). 100 

2.2.1 Setup and Calibration 101 

DHSVM land surface parameters are from LANDFIRE (2022) and RCMAP (Rigge et al., 102 

2021). Meteorological data from gridMET (Abatzoglou, 2013) are disaggregated with MetSim 103 

(Bennett et al., 2020). Modeled snowfall is distributed in proportion to the reference SWE map 104 

or uniformly below the lidar snowline. This multiplier-based approach implicitly accounts for 105 

preferential deposition and redistribution (Jackson, 1994; Vögeli et al., 2016). 106 

Parameters are based on Sun et al. (2019) and refined by calibration, along with 107 

temperature and precipitation biases. Four objectives constrain model behavior: SWE root 108 

mean square error (RMSE); SWE R2 for cells with SWE >1 m; SWE volume bias; and albedo 109 

RMSE for cells with SWE >0.1 m (from ASO hyperspectral data). Calibration is implemented 110 

using multi-objective Bayesian optimization (Emmerich et al., 2008). 111 

The selected parameter set has SWE R2 = 0.991 for cells with SWE >1 m. Exceptional 112 

model skill is possible because the reference SWE pattern is used to distribute snowfall. The 113 

calibrated model is Pareto-efficient across objectives (SWE RMSE = 0.12 m, volume bias = 114 

+8.8%, albedo RMSE = 0.26). 115 
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2.2.2 Snowfall and Accumulation 116 

I estimate net accumulation by accounting for ablation in the lidar-based SWE map: 117 

“reference accumulation” = reference SWE + (modeled accumulation – modeled SWE). DHSVM 118 

indicates maximum SWE around May 10-15, 2024, with a 3% reduction by the May 31 survey, 119 

so the adjustment between SWE and seasonal accumulation is minor. 120 

I model local snowfall in DHSVM assuming a smoother precipitation distribution. 121 

Orographic effects and preferential deposition control alpine snowfall (Lehning et al., 2008, 122 

Mott et al., 2018) at scales below the 4 km resolution of gridMET data. I infer a plausible above-123 

ground snowfall pattern with a 2 km moving-average of the lidar-based pattern, applied twice 124 

to remove edge artifacts. The 2 km kernel preserves mountain-scale patterns while removing 125 

drifts. A smaller window preserves obvious drift patterns, which is disallowed. I also test three 126 

alternative patterns: (1) a 4 km moving-average, (2) Lanczos spline interpolation of gridMET 127 

precipitation, and (3) a uniform distribution. The 2 km kernel preserves the most spatial 128 

heterogeneity, so I use this snowfall pattern to estimate a lower bound on required transport 129 

and test sensitivity with the other patterns. 130 

2.3 Differentiable Snow Transport Model 131 

I develop a differentiable model of snow transport based on a feed-forward neural 132 

network, or NN (Caterini & Chang, 2018). Mass conservation and flux continuity are enforced. 133 

Unlike typical “black box” NN applications, learned weights physically represent the fraction of 134 

available snow exported from each grid cell (Figure 1). 135 

2.3.1 Mathematical Structure 136 

Assume an (x, y) model grid, size (m, n), with the prevailing wind direction toward 137 

increasing x. Each grid cell corresponds to a single neuron (Figure S2), with m “layers” (map 138 

columns) each containing n “neurons” (grid cells). Equation 1 defines transport: 139 

𝐴𝑥 = 𝑊𝑥𝐴𝑥−1 + 𝑏𝑥 = [

𝑤1,1
𝑥 ⋯ 𝑤1,𝑛

𝑥

⋮ ⋱ ⋮
𝑤𝑛,1

𝑥 ⋯ 𝑤𝑛,𝑛
𝑥

] [
𝑎1

𝑥−1

⋮
𝑎𝑛

𝑥−1
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𝑏1
𝑥

⋮
𝑏𝑛

𝑥
] (1) 140 

The linear activation (Ax) represents the total available mass from local snowfall and 141 

incoming transport. First and last layer activations are zero to enforce no-transport boundaries. 142 

The bias (bx) defines the local snowfall, and the weights matrix (Wx) defines the fraction of Ax 143 

transported between layers x-1 and x. Weights are scaled so that the export fraction (Fx) 144 

preserves mass: 145 

𝐹𝑥 = ∑ 𝑤𝑖,𝑗
𝑥+1

𝑖
,    0 ≤ 𝐹𝑥 < 1 (2) 146 

To enforce flux continuity, only tridiagonal entries of Wx are nonzero, so that snow from 147 

(x, y) can only arrive at (x+1, y) and (x+1, y±1). Dispersion occurs when snow is split between 148 

two downwind cells. 149 
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Only one of wx
j+1,j

 or wx
j-1,j may be significantly nonzero, thereby encoding a center-of-150 

mass (COM) deflection angle at each cell. Following Figure S3, the maximum COM deflection 151 

angle (θmax) is constrained by the ratio between lateral and diagonal transfer fractions: 152 

𝑤𝑗±1,𝑗
𝑥 ≤ 𝑤𝑗,𝑗

𝑥 ∗
tan(𝜃𝑚𝑎𝑥)

1 − tan(𝜃𝑚𝑎𝑥)
(3) 153 

The mass flux (Qx) is defined by Ax and Fx, where ⨀ denotes element-wise 154 

multiplication: 155 

𝑄𝑥 = 𝐹𝑥⨀𝐴𝑥 = 𝑊𝑥𝐴𝑥 (4) 156 

The net accumulation (Nx) is the residual of Ax and Qx: 157 

𝑁𝑥 = (𝐴𝑥 − 𝑄𝑥) = (1 − 𝐹𝑥)⨀𝐴𝑥 (5) 158 

The distance-weighted mass flux (Qdist) is analogous to the mean of Qx, except that 159 

diagonal transport is scaled by √2 using distance matrix D: 160 

𝑄𝑑𝑖𝑠𝑡 =
1

𝑛 ∗ 𝑚
∑ (𝐷⨀𝑊𝑥)𝐴𝑥

𝑥,𝑦
(6) 161 

2.3.2 Training 162 

The network learns transport pathways between the modeled above-ground snowfall 163 

and reference ground accumulation patterns. The reference accumulation pattern defines the 164 

sole training example, and the NN is not intended for generalized prediction since Wx encodes 165 

the site-specific spatial arrangement of scour and deposition zones. An error tolerance is 166 

required relative to the reference accumulation pattern due to uncertainty in the modeled 167 

snowfall. 168 

The transport flux is equifinal, e.g., snow imported to (x, y) could come from (x-1, y) or 169 

(x-2, y), but a lower bound on transport can be estimated by minimizing Qdist. Energy is 170 

dissipated roughly in proportion to distance traveled per unit mass (i.e., from friction), so 171 

minimizing Qdist implies a lower bound on energy available for transport. Individual particles 172 

might follow longer paths, but minimizing Qdist constrains the “path of least resistance” 173 

between local snowfall and net accumulation patterns. 174 

2.3.3 Implementation 175 

At 100 m resolution, the 442 km2 study area requires 260 NN layers, each with 170 176 

neurons. Prevailing westerly winds in the WRR are naturally oriented to the grid; elsewhere, a 177 

rotation may be necessary. The COM deflection angle is constrained to ±22.5°, consistent with 178 

drift patterns observed in the snow lidar data. With three valid weights per neuron, the NN has 179 

132,090 learnable parameters (last layer fixed to zero). 180 

Three constraints define an error tolerance, subject to which Qdist is minimized. The 181 

predicted accumulation pattern must have RMSE <8 cm, which is the lowest error tolerance 182 

that does not cause unphysical aberrations (e.g., overfitting causes unrealistically high transport 183 

in forested areas). To reduce spatial biases, the error of each cell may not exceed 200% of the 184 
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overall RMSE, i.e., ±16 cm. To reduce depth-dependent biases, cells are binned by accumulation 185 

depth in 10 cm increments, and the mean absolute bias across all bins may not exceed 1 cm. 186 

Training is implemented in PyTorch (Paszke et al., 2019) using automatic differentiation 187 

(Baydin et al., 2017) and the Adam optimizer (Kingma & Ba, 2017) for 105 iterations. Training 188 

takes ~1.5 days on a consumer GPU. 189 

2.4 Parcel Tracking 190 

Mobile snow (Qx) is assumed to be well-mixed within each cell. However, the total 191 

available snow (Ax) is not necessarily well-mixed, since transport may occur above a relatively 192 

immobile ground snowpack. To estimate a lower bound on transport, I assume that local 193 

snowfall contributes as much as possible of the net accumulation in each cell (Figure S4). 194 

For each cell with net export (snowfall > accumulation), I propagate its contribution 195 

through the NN and track its contribution to all downwind cells. I then calculate the mean mass-196 

weighted contributing distance of net accumulation in each cell (including local snowfall with 197 

zero distance). I also calculate the fraction of accumulation originating within a given upwind 198 

distance and the number of upwind cells that contribute at least 1, 10, or 100 mm of their local 199 

snowfall to a given downwind cell. Finally, I track how much snowfall from each cell ends up 200 

within specific watershed masks. 201 

  202 
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3 Results and Discussion 203 

3.1 Snow Transport Flux 204 

Figure 2 illustrates the northern WRR study area. The modeled 2024 seasonal snowfall is 205 

0.42 m averaged across the domain, reaching 1.1 m at high elevations. Very deep accumulation 206 

zones (3-5.4 m SWE) contain 3-9 times more water than the local snowfall at those locations. 207 

The minimized distance-weighted mass flux is 0.91 m SWE per grid cell (Qdist, Eq. 6), slightly 208 

higher than the mean flux of 0.80 m (Qx, Eq. 4) due to diagonal transport. Qx can reach 8-14 m 209 

at downwind plateau margins. Note that Qx represents transport over an entire accumulation 210 

season, not an instantaneous flux. 211 

 212 

Figure 2. Study area maps: (A) shaded relief colored by elevation; (B) export fraction, Fx; (C) 213 

transport flux, Qx; (D) local snowfall modeled by DHSVM, bx; (E) net snow accumulation from 214 

the neural network, Nx; (F) error in final modeled SWE relative to measurements. 215 

Higher export fractions (Fx, Eq. 2) are associated with summit plateaus, and lower export 216 

fractions define sheltered areas (Figure 2B). The median upwind shelter angle (Winstral & 217 

Marks 2002) is 2° for cells that export at least 0.5 m of SWE, and 15°, 20°, or 29° for cells that 218 

import at least 0.5, 1, or 2 m of SWE. Based on the WindNinja Reynolds-Averaged Navier-Stokes 219 

solver (Wagenbrenner et al., 2019), the median transport flux is 0.42 m in areas with lower-220 

quartile wind speeds and 0.72 m (71% higher) in areas with upper-quartile wind speeds (Figure 221 



Manuscript submitted to Geophysical Research Letters 

 

S5). Despite lacking any explicit process representation or topographic input data, the NN 222 

implies sensible relationships between terrain, wind, and snow transport. 223 

After accounting for ablation effects (Section 2.2.2), the NN matches the reference SWE 224 

map with R2 = 0.96. Residual errors appear related to missing orographic effects and blowing 225 

snow sublimation (Figure 2F). Since errors are constrained to ±16 cm with no depth-dependent 226 

bias (Section 2.3.3), these errors should minimally impact analysis of the seasonal flux into cells 227 

with SWE >1 m. Indeed, by minimizing Qdist, spatial biases in the residual error have the effect 228 

of underestimating transport, a desirable property for the lower bound estimated here. 229 

3.2 Contributing Distance and Source Areas 230 

The mass-weighted mean contributing distance over the whole study area is 0.15 km, 231 

increasing to 0.43 km for cells with SWE >1 m and 0.92 km for SWE >3 m (Figure 3A). Local 232 

snowfall exceeds net accumulation for 86% of cells with SWE <1 m. However, cells with SWE >1 233 

m import 46% of their net accumulation, and the upwind contributing distance increases 234 

rapidly for deep drift zones (Figure 3B). The fraction of net accumulation imported from >1 km 235 

upwind increases from 14% for cells with 1-2 m SWE to 21%, 32%, 44%, and 53% for 236 

successively deeper SWE bins (1 m increments). For 100 m cells with 4-6 m SWE (N = 13), 47% 237 

of net accumulation is imported from >1 km upwind, and 15% is from >2 km upwind. 238 
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 239 

Figure 3. (A) Map of mass-weighted mean contributing distance; (B) fraction of net 240 

accumulation that originates within a given distance upwind, binned by final SWE; (C) final SWE 241 

vs. mean contributing distance for each grid cell, colored by elevation; (D) distribution of 242 

contributing source areas from which at least 1, 10, or 100 mm of local snowfall is imported to 243 

a given downwind cell, binned by final downwind SWE. 244 

The relationship between contributing distance and final SWE depth is nuanced (Figure 245 

3C), with Pearson correlation r = 0.59. The mean contributing distance varies from 0.3 to 2.1 km 246 

for SWE >3 m. Drifts covering a larger area require longer contributing distances compared to 247 

isolated drifts. Long-distance transport is also associated with deep snow at relatively low 248 

elevations due to reduced local snowfall. For example, there is an r = -0.41 correlation between 249 

elevation and contributing distance for cells with 1-2 m SWE. The longest mean contributing 250 

distances (1.9-2.1 km) are associated with relatively low elevations (3200-3400 m) and medium 251 

to deep SWE (1-4 m) along the downwind margins of summit plateaus. 252 

Most deep snow is accumulated incrementally from a relatively large source area 253 

(Figure 3D). Two notable cirques collect snowfall from 2.8-3.5 km2 contributing source areas. 254 

The median source area contributing at least 1 mm of SWE to a given downwind cell is 0.9 km2 255 

for downwind cells with SWE >2 m and 1.8 km2 for SWE >3 m. Source areas shrink when raising 256 

the minimum contribution threshold, with a median of 1.8, 0.7, or 0.04 km2 contributing >1, 257 

>10, or >100 mm to cells with SWE >3 m. There is a negative correlation (r = -0.76, N = 49) 258 
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between the size of areas contributing >1 or >100 mm to cells with SWE >3 m. Concentrated 259 

transport (>100 mm imported from each cell in a >0.1 km2 area) produces deep accumulation 260 

(2.8-4.8 m SWE) with an abnormally low mean contributing distance of 0.41 km, compared to 261 

0.83 km across all cells in the same accumulation range. The topographic setting of these 262 

concentrated transport areas (steep headwalls) suggests a dominant role of avalanches. The 263 

stratification of concentrated and dispersed source areas might help classify dominant snow 264 

transport processes. 265 

3.3 Snowshed Boundaries 266 

Snow transport across topographic divides complicates the concept of catchment area. 267 

Two streams are gauged in the study area: Torrey Creek (125 km2), monitored continuously by 268 

the author, and a meltwater stream from the upper Continental Glacier (2.0 km2), monitored 269 

intermittently by Vandeberg and VanLooy (2016, 2024). Figure 4 illustrates the “snowshed” 270 

boundaries of these streams, defined here as the area from which some fraction of snowfall 271 

may contribute to streamflow at a specified pour point. Snowsheds overlap between 272 

watersheds because import/export areas also retain some local snowfall. Moreover, snowsheds 273 

are spatially discontinuous due to intervening sheltered areas (i.e., snow may blow over a 274 

sheltered gully). 275 
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 276 

Figure 4. “Snowshed” boundaries for the Torrey Creek and Continental Glacier watersheds 277 

(locations in Figure 2A). Colored polygons represent areas where at least 50%, 10%, or 1% of 278 

the local snowfall is imported into or exported out of the watershed. Imagery: NAIP, July 2022. 279 

The effective Torrey Creek catchment increases by 16 km2 (13%) when including areas 280 

that contribute >1% of local snowfall. Conversely, an interior area of 23 km2 (18%) exports >1% 281 

of local snowfall out of the watershed. Although the export area is larger than the import area, 282 

snowfall is higher along the WRR crest. Thus, Torrey Creek imports 6.6% of its accumulation and 283 

only exports 2.8%, producing a net gain of 1.6 cm watershed-average SWE. 284 

The difference between snowshed and watershed boundaries is most pronounced at 285 

smaller scales. About 23% of snow accumulation in the Continental Glacier first-order stream 286 

catchment originates outside the topographic watershed, which is a lower bound that assumes 287 

a maximal contribution from direct snowfall on the glacier (Section 2.4). The effective 288 

catchment area more than doubles (2.0 to 4.4 km2) when including areas that contribute >1% 289 

of local snowfall (Figure 4). The patch of modeled snowfall export from the Continental Glacier 290 

aligns with observed bare ice patches caused by early ablation of the thin residual snowpack 291 

(VanLooy et al., 2013). 292 

There is a considerable flux of snow across the Continental Divide from Pacific to 293 

Atlantic basins (~3x105 kg/m seasonally). The total mass imported into Torrey Creek (largely 294 
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across the Continental Divide) is 3.5x10-3 km3, equivalent to 7% of the 2024 water yield. Over 295 

the October-May accumulation season, this equates to a mean snow transport flux of 0.17 m3/s 296 

entering the watershed, or 32% of mean streamflow on the same time period. Baker (1946) 297 

first hypothesized that snow drifting across the Continental Divide might underlie patterns of 298 

glacier abundance in the WRR. The present results support a sizable impact of interbasin snow 299 

transport on watershed-scale snow accumulation patterns. 300 

3.4 Sensitivity and Interpretation 301 

The baseline 2 km moving average snowfall pattern provides a conservative lower 302 

bound on transport by preserving considerable heterogeneity in the local snowfall pattern. 303 

With the alternative snowfall patterns (Section 2.2.2), the contributing distance for cells with 304 

SWE >3 m increases by 17-41% and the interbasin flux into Torrey Creek increases by 24-53% 305 

(Table S1). While the true transport flux remains uncertain, multi-kilometer transport is an 306 

important control on snow accumulation patterns in all scenarios. The relationships between 307 

topography, SWE, contributing distance, and snowshed boundaries also remain reasonably 308 

consistent (Figure S6-S8). 309 

Minimizing Qdist (Section 2.3.2) causes each snow parcel to move directly towards its 310 

final destination, unlike real-world blowing snow, which is turbulent and undirected. Again, this 311 

approach leads to a conservative lower bound on contributing distances since the modeled 312 

snow “knows” where to go, unlike real snow. 313 

It is challenging to separate transport into preferential deposition and redistribution, 314 

and these results might partially represent near-surface snowfall dynamics. However, my 315 

treatment is similar to process-based transport models that account for preferential deposition 316 

by re-suspending snowfall after it reaches the ground (cf. Reynolds et al., 2021, Section 6.4). 317 

Scipión et al. (2013) confirm that snowfall several hundred meters above ground is much 318 

smoother than ground snow accumulation patterns. Transport fluxes described here are best 319 

interpreted relative to snowfall above the near-surface flow field (Mott et al., 2018). 320 

Although physically constrained by mass conservation and flux continuity, the NN is 321 

highly abstracted and lacks sublimation processes. However, self-limiting humidity feedbacks 322 

may reduce alpine sublimation to ~0.1% of precipitation (Groot Zwaaftink et al., 2013). Quéno 323 

et al. (2024) similarly found that transport outweighs sublimation in shaping landscape-scale 324 

alpine snow patterns. Still, future work could potentially include sublimation in the 325 

differentiable modeling framework. 326 

4 Conclusions 327 

Assuming that precipitation patterns are considerably smoother, the WRR snowpack 328 

distribution results from multi-kilometer transport. Extensive areas of SWE >3 m (3-9 times 329 

seasonal snowfall) imply contributing distances of 0.3-2.1 km with drift source areas up to 3.5 330 

km2. Due to large interbasin transport fluxes, snowsheds may be more relevant than purely 331 

topographic watersheds for understanding streamflow generation in windy and snowy 332 

environments. 333 
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The framework described here is an example of differentiable modeling, a burgeoning 334 

field in the geosciences (Shen et al., 2023). The structure of neural networks makes them well-335 

suited for representing directional transport, which could extend to many other hydrological 336 

processes. 337 
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