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DHSVM-WSF 

The Distributed Hydrology Soil Vegetation Model for Water Supply Forecasts 

I.  Abstract 

Mountain Hydrology LLC introduces a first-in-class physically based operational water supply forecast (WSF) platform 

built on the Distributed Hydrology Soil Vegetation Model (DHSVM). The DHSVM-WSF framework supports real-time 

ensemble streamflow prediction to generate probabilistic water supply forecasts on weekly to seasonal timescales. With a 

generalized setup and calibration pipeline, DHSVM-WSF is ready for use on any watershed in the Western U.S. with area 

100-10,000 km2. The model setup uses machine learning to harmonize distributed land surface, subsurface, and 

meteorological data from numerous sources, including yearly dynamic vegetation updates to capture wildfires and other 

forest disturbances. The model calibration leverages multi-objective Bayesian optimization to constrain uncertainty in 

hydrological processes. DHSVM-WSF includes native support for snow data assimilation using the Snow Assimilation 

Water Accounting Method (SAWAM), an exclusive processing workflow that assimilates measured maps of snow water 

equivalent (SWE) while preserving the water mass balance and model dynamics (U.S. Patent #12165225). Sub-seasonal 

ensemble weather forecasts are integrated into DHSVM-WSF to further constrain uncertainty. The historical performance 

of DHSVM-WSF typically obtains a daily Nash-Sutcliffe Efficiency (NSE) of 0.8 to 0.9 in snowy mountain watersheds, 

with seasonal water yield error typically on the order of 10% across wet and dry years using observed (backcast) weather. 

II. Motivation 

Reliable WSF predictions are crucial for water management planning and adaptation in the Western U.S., with forecasts 

informing decision-making to mitigate hazards and create economic value. Compared to statistical methods, which are 

mean-centralizing and rely on assumptions of stationarity, physically based forecast methods like DHSVM-WSF are 

better suited to predict extreme events and can operate under non-stationary conditions, such as climate change. Physical 

models are inherently interpretable, support new data sources, enable error detection and correction, and are more likely to 

lead to the right answers for the right reasons. Compared to other operational physically based forecast models, DHSVM-

WSF parameterizes the landscape at much finer resolution (e.g., 90 m instead of 1,000 m in WRF-Hydro) and robustly 

handles critical hydrological processes such as vegetation-snow interactions. Since mountain hydrology is extremely 

nonlinear, high-resolution models exploiting the latest advances in remote sensing and machine learning are the natural 

endpoint as operational forecasts transition from lumped empirical relationships to fully distributed physical models. 

DHSVM (Wigmosta et al. 1994, 2002) simulates the water mass and energy balance for each grid cell across a landscape 

(typically at 90 m resolution in DSHVM-WSF), with overland, subsurface, and channel flow routing. DHSVM was 

identified as the “preferred” hydrological model for use in mountainous terrain by Beckers et al. (2009) due to the model’s 

sophisticated treatment of hydrological processes and historical validation with observational data. However, DHSVM has 

seen limited operational application due to the model’s perceived complexity and computational burden. Beckers et al. 

(2009) estimate that setting up DHSVM for a single watershed typically requires a time commitment of 2-6 months, 

incurring a cost of $40,000 to >$100,000 per basin. By taking advantage of modern advances in automation and the 

burgeoning availability of large-scale, high-resolution datasets, Mountain Hydrology has developed the first-ever 

automated setup, calibration, and forecast pipeline for DHSVM, enabling the deployment of this powerful research-grade 

model to support the operational needs of water managers in an unlimited number of basins across the Western U.S. 
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III.  Model Setup 

A. Terrain and Flow Routing 

The Mountain Hydrology DHSVM setup pipeline begins by defining a watershed upstream of a user-supplied pour point, 

typically a stream gage, reservoir, or forecast point. SRTM digital elevation data (Farr et al. 2007) are hydrologically 

corrected with embankments or breaches to match natural flow paths. Channels are delineated using a minimum flow 

accumulation area that is determined by visual agreement with channel initiation points in local remote sensing imagery. 

The bankfull geometry of each channel segment is estimated from regional regression equations (Bieger et al. 2015), and 

variable Manning’s N roughness coefficients are estimated from a typical d84 particle size using Limerinos (1970). 

B. Land Surface Model 

The DHSVM land surface model provides one of the most sophisticated treatments of grid-scale vegetation structure in 

any distributed hydrological model, requiring extensive data to parameterize. The Mountain Hydrology procedure 

involves harmonizing spatially distributed data from three main sources: RCMAP (Rigge et al. 2021), NLCD (Dewitz 

2023), and Landfire (U.S. DOI 2022). Forest, shrub, and herb fractional cover maps are used to determine the presence 

and density of overstory and/or understory in every grid cell. Overstory leaf area (LAI) is estimated empirically from 

fractional cover (Pomeroy et al. 2002) and refined with calibration. Overstory and understory types are reclassified for 

each pixel to the species level where possible based on Landfire data, or otherwise reclassified to the functional type (e.g., 

DHSVM-WSF separately parameterizes distinct conifer classes like Douglas fir, red fir, lodgepole pine, etc., but a 

distinction is not always possible, so the model also has a Mixed Conifer class). Abiotic classes include bare ground (e.g., 

fire scars), talus/rock, water, ice, and developed areas, which can include impermeable areas and/or detention storage 

(Cuo et al. 2008). The attributes of each vegetation class (morphology, interception, transpiration, root zones, etc.) are 

determined at the species or community level based on an extensive review of more than 50 publications. Maps of 

overstory fractional cover, overstory monthly leaf area (LAI), overstory height, and understory height are directly input to 

the model and vary independently from the vegetation type, fully exploiting the distributed nature of DHSVM. Maps of 

vegetation type, cover, and other attributes are updated yearly based on RCMAP data derived from remote sensing, 

machine learning, and change-detection algorithms (Rigge et al. 2021). Dynamic vegetation maps are fully integrated into 

the DHSVM-WSF pipeline, reflecting fires and other disturbances during the calibration period and ensuring that the 

model provides the most up-to-date representation of the watershed during each forecast season. 
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C. Subsurface Characterization 

DHSVM implements a complex and spatially explicit representation of subsurface processes using a four-layer soil model 

with three root-zone layers and one deeper quasi-aquifer layer. The DHSVM representation is best suited to modeling 

subsurface hydrology in environments characterized by steep slopes and shallow bedrock, which is typical of the Western 

U.S. mountains. The Mountain Hydrology setup pipeline uses machine learning to reanalyze and downscale a 

combination of spatial and tabular data from SSURGO soil survey datasets (NRCS 2022) and CoGTF water retention 

parameter maps (Gupta et al. 2022) to derive spatially coherent multi-layer maps of numerous soil properties at the 

DHSVM grid scale, including textural classification, near-surface hydraulic conductivity, porosity, field capacity, etc. 

Vertical profiles of transmissivity and various water retention parameters are derived for each soil textural class by 

leveraging the three-dimensional structure of the SSURGO soil horizon database and the multi-layer CoGTF maps. The 

soil depth pattern is based on a machine learning reanalysis of the SSURGO soil depths and the 30 m terrain curvature 

(Patton et al. 2018), with root zone depths and fractions primarily based on Jackson et al. (1996). The depth of the deep 

(quasi-aquifer) soil layer is estimated through calibration relative to the soil depth pattern map. Additionally, other highly 

sensitive parameters affecting transmissivity and water storage capacity (i.e., conductivity, the exponential decrease in 

conductivity with water table depth, porosity, and field capacity) are also calibrated relative to the respective maps. 

 

D. Meteorological Forcing 

DHSVM requires precipitation, temperature, humidity, wind, and shortwave/longwave radiation forcing data to drive the 

temporal simulation. The gridMET meteorological dataset (Abatzoglou 2013) provides daily precipitation, wind, and 

minimum/maximum temperature estimates at the 4 km scale based on long-term spatial patterns, meteorological 

reanalysis, and gauge measurements. These data are disaggregated to a 3-hour timestep and complementary humidity and 

radiation data are simulated using MetSim (Bennett et al. 2020), which is based on MTCLIM (Hungerford et al. 1989). 

Precipitation and temperature are downscaled to the DHSVM resolution using machine learning and historical spatial 

patterns to redistribute precipitation and derive spatially variable monthly temperature lapse rates. If spatial snow data are 

available (usually from remote sensing), the redistribution of snow by wind and terrain is simulated using a pattern-based 

method. In forecast mode, a 40-year ensemble of historical gridMET meteorology is appended to the 48-member CFSv2 

sub-seasonal (30-day) forecast ensemble (Saha et al. 2014) to propagate variability in the post-forecast weather into 

ensemble streamflow predictions while constraining uncertainty wherever possible. 
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IV. Calibration 

Although most of the hundreds of parameters and maps in DHSVM can be constrained a priori using field data and other 

observations, several key processes like subsurface flow and snowpack accumulation/ablation are emergent phenomena 

that do not permit a “correct” parameterization. Emergent hydrological processes can be constrained in physically based 

distributed hydrological models even when variables like soil depth or hydraulic conductivity remain uncertain 

(Boardman et al., in prep.). This is accomplished by using multi-objective Bayesian optimization to learn the Pareto 

frontier for objective functions targeting different hydrological signatures like baseflow, peak flows, snowmelt, and water 

yield. Mountain Hydrology implements these procedures using Gaussian Process surrogate models (Roustant et al. 2012) 

and parallel Particle Swarm Optimization (Zambrano-Bigiarini & Rojas 2013) to optimize the Expected Hypervolume 

Improvement (Binois & Picheny 2019) in a generational calibration framework. Pareto-optimal models are filtered to 

identify endmembers balancing tradeoffs between different objectives. The resulting DHSVM ensemble constrains 

residual uncertainty in modeled hydrological processes and provides the first fully Bayesian framework for hydrological 

prediction using a distributed physical model. Since DHSVM is a very computationally expensive model, Mountain 

Hydrology has invested in an on-premise high performance computing (HPC) cluster to enable robust calibration and 

ensure that real-time forecast results are available in a timely manner. As a point of interest, the Mountain Hydrology 

HPC is approximately 25x as powerful as the world’s fastest supercomputer in 1994, when DHSVM was released. 

V. Forecasting 

Mountain Hydrology has operationalized DHSVM for real-time water supply forecasting by developing an efficient 

pipeline to handle meteorological data and generate ensemble streamflow predictions. Forecasts are made using a 48-

member ensemble sub-seasonal weather forecast from CFSv2 (Saha et al. 2014) downscaled and bias-corrected using 

historical gridMET data (Abatzoglou et al. 2023) combined with long-term weather from the prior 40 years of historical 

meteorology data propagated through the ensemble of calibrated DHSVM models. A stochastic Bayesian framework also 

propagates residual uncertainty in the calibrated hydrological models. In watersheds with SWE maps acquired by remote 

sensing, DHSVM-WSF can assimilate these SWE data while preserving the water mass balance and model dynamics. The 

Snow Assimilation Water Accounting Method (SAWAM) uses a spatially explicit local linearization of the pre-

assimilation modeled water mass balance fluxes to construct a time-reversible surrogate model, from which it is possible 

to infer and correct errors in precipitation, streamflow, subsurface storage, and channel storage based on a single SWE 

map (U.S. Patent #12165225). 

The DHSVM-WSF deliverable is a CSV file containing daily ensemble streamflow traces for a given forecast period and 

a written report containing a summary of current conditions, with tabular water supply forecast guidance at the 10%, 50%, 

and 90% exceedance levels. Mountain Hydrology targets forecast delivery by close of business on the forecast issue date. 
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Get DHSVM-WSF in Your Watershed! 

Availability 

DHSVM-WSF historical simulations and real-time water supply forecasts are available for any watershed entirely 

contained in the Western U.S. with total area between 100 and 10,000 km2. Larger basins and basins extending into 

Canada may be available on a case-by-case basis, as they require additional custom development. The model is best suited 

for use in mountainous environments such as the Sierra Nevada, Cascades, and Rocky Mountains. 

Lead Time 

DHSVM-WSF setup and calibration requires a minimum one to two month lead-time before the first forecast issue date. 

Water Supply Forecast Deliverables 

The primary deliverables from DHSVM-WSF, provided by close of business on the forecast issue date, are: (1) a CSV of 

daily ensemble streamflow traces for the period from the start of the current water year through the end of the customer-

defined seasonal forecast period, and (2) a written report containing tabular water supply forecast guidance at the 10%, 

50%, and 90% exceedance levels with accompanying qualitative and quantitative analysis of the current basin conditions 

and water supply outlook compared to other years. Additionally, a model setup and calibration report is prepared for each 

watershed each year detailing the land surface and subsurface characteristics and validating the model’s performance. 

Cost 

The cost of operating DHSVM-WSF depends on the watershed size, number of forecast deliveries required, availability of 

SWE maps for assimilation, and other factors. The forecast cost includes yearly updates to the model setup to incorporate 

land surface disturbances and development costs to implement improved methods each year in addition to yearly re-

calibration to take advantage of new SWE data and account for climate nonstationarity or land surface change. A detailed 

quote and complementary suitability analysis will be provided on request for any qualifying watershed (cf. Availability). 

Please contact eli.boardman@mountainhydrology.com to request your customized estimate. 

Research Applications 

DHSVM is a powerful tool to investigate numerous hydrological research questions beyond water supply forecasting. For 

academic or government customers with technical expertise who wish to use DHSVM for non-forecast purposes, 

Mountain Hydrology can set up and calibrate DHSVM using state-of-the-art, reproducible procedures in a fraction of the 

time required to manually set up a distributed physical hydrology model from scratch. In support of public-benefit water 

science, Mountain Hydrology can offer the research community a considerable discount on model setup and calibration 

only. Deliverables will be negotiated on a case-by-case basis depending on specific project requirements but will include 

at minimum all materials necessary to run an ensemble of calibrated DHSVM models in the customer’s watershed and a 

methodological appendix that can be included as supplementary material in scientific or technical publications. 
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Frequently Asked Questions 

Isn’t DHSVM a free model? 

The DHSVM source code is distributed by the Pacific Northwest National Lab (PNNL) and is Public Domain (cf. Perkins 

et al. 2019 “Software Availability”). However, one look at the configuration file template is usually enough to deter most 

would-be users. Mountain Hydrology is not selling DHSVM, but rather offering an economical service to make DHSVM 

operationally useful to the water resources community without having to dedicate years to learn the model’s intricacies. 

Are any other organizations affiliated with the DHSVM-WSF platform? 

The DHSVM-WSF platform is exclusively developed and made available by Mountain Hydrology LLC, which is not 

affiliated with any other private or public entity. However, several of the original and ongoing contributors to DHSVM 

are aware of the project and enthusiastic about the potential for more widespread application of the model. 

Can you share the scripts that help set up and calibrate the model? 

Regrettably, no. The DHSVM-WSF processing pipeline uses several software packages with licenses that make it 

impossible to share the setup scripts with anyone, even just for personal investigation, without also releasing them under 

an overly permissive license. However, Mountain Hydrology is committed to furthering public benefit science on a good 

will basis by offering a large discount on model setup and calibration to qualifying academic or government researchers. 

Is DHSVM-WSF better than XYZ other model? 

DHSVM-WSF merges a comprehensive, process-based physical hydrological model with state-of-the-art data reanalysis, 

machine learning techniques, and physically based snow data assimilation to generate a first-in-class physical water 

supply forecast platform. For seasonal-scale water supply forecasting in mid-sized mountain watersheds, DHSVM-WSF 

could outperform many other forecast methods. However, past performance does not guarantee future results, and there is 

an element of unpredictability in any natural system. Sometimes, any given model might have lower error in a particular 

year just by random chance. Unlike most other physically based forecast platforms, DHSVM-WSF propagates uncertainty 

in the underlying model parameterization all the way to the final forecast exceedance levels, so the DHSVM-WSF 

framework is uniquely positioned to quantify uncertainty, a key element of any forecast-informed decision-making. 

But isn’t machine learning the answer to everything? Are physically based models still relevant? 

Artificial intelligence and machine learning methods may prove useful for hydrological prediction in certain situations, 

particularly on short timescales. However, since machine learning methods are based on statistical relationships, they 

cannot predict out-of-sample disturbances, such as the watershed response to wildfires and climate change. Furthermore, 

the sources of uncertainty in machine learning models are difficult to interpret, leaving managers without answers when 

the models go wrong. Physically based distributed hydrological models are the only tool that fuses the “why” and “how” 

of hydrological science with the “what” of big data to generate rigorously justified, interpretable hydrological predictions. 

I heard DHSVM is a “research model.” Is such a complicated model really justified for water supply forecasting? 

Yes! In places where water supply forecasts affect water management, the skill and reliability of those forecasts 

(including accurate uncertainty quantification) is of paramount importance. When water supply forecasts are misleading, 

unforeseen droughts or floods can threaten the livelihood and safety of entire populations. Conversely, reliable water 

supply forecasts can increase decision-making confidence, leading to more efficient strategies for optimizing competing 

water uses. Forecast-informed water management decisions can contribute hundreds of thousands or millions of dollars in 

economic benefit through increased hydropower generation, agricultural drought mitigation, flood prevention, and more. 

Best practices for modern water management demand the deployment of research-grade tools like DHSVM-WSF to 

ensure the security and resilience of the West’s water resources.  
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