

Holistic Research to Support Resilient Water Management

2025 Wind River Range Water Supply Forecasting: June 2025

Mountain Hydrology LLC presents the 2025 delivery of Wind River Range remotely sensed snow data and experimental seasonal water supply forecasts as part of the Bureau of Reclamation's Snow Water Supply Forecasting Project.

A key component of this project is the collection of airborne lidar data by Airborne Snow Observatories, Inc. (ASO) and snow density field measurements by Mountain Hydrology to estimate full-watershed snowpack storage at 3 meter spatial resolution. The first of three annual full-watershed snow water equivalent (SWE) maps is presented below. These data are assimilated into a physical water supply forecasting model, DHSVM-WSF (refer to supplementary setup materials) to generate probabilistic runoff forecasts. This report discusses the snowpack survey and runoff forecasting results.

Best, Eli Boardman Chief Scientist and Founder, Mountain Hydrology LLC

Delivered: June 7th, 2025

Eli Boardman

The following forecasts are EXPERIMENTAL and provided "as is" with no warranty express or implied. Mountain Hydrology LLC explicitly disclaims any liability associated with or arising from use of these data and disclaims any express or implied warranty of accuracy, validity, fitness for a particular purpose, non-infringement, or merchantability. Using or referencing the following data in any manner indicates your acknowledgement of these terms and your sole assumption of the entire risk associated with experimental data.

Note: ASO's official version of the snow depth map can be found at https://data.airbornesnowobservatories.com/.

Holistic Research to Support Resilient Water Management

Snow Depth Survey

Mountain Hydrology contracted with Airborne Snow Observatories, Inc. (ASO) to obtain high resolution lidar-based snow depth maps for 10 key sub-watersheds in the Wind River Range. The survey was targeted for late May based on local knowledge of snowmelt runoff timing and communication with managers, who noted that the SNOTELs typically melt out around late May, thus causing water management decisions to be made "in the dark." This year, the survey was acquired over multiple aircraft flights on June 1-2, and the ASO team processed and delivered the data by the afternoon of June 5.

One key improvement to the snow depth survey is the inclusion of updated topographic data over persistent snowfields and glaciers, which are rapidly melting and changing elevation. Previously, the ablation of glaciers between 2019 (USGS lidar acquisition) and 2022 (first Wyoming ASO acquisition) caused negative snow depths in most glaciated areas, which were masked to zero or imputed. Thanks to a generous in-kind commitment by ASO to help acquire updated glacier lidar data in October of 2024, this year the snow-off topography was freshly updated and the snow depth measurements on top of the glaciers were meaningful.

Additional information on the ASO survey can be found in the ASO report available from the portal linked above.

Glacier Ablation (2023 - 2024)

Holistic Research to Support Resilient Water Management

Snow Density Survey

To estimate how much total water is stored in the snowpack, Mountain Hydrology collaborated with the University of Nevada, Reno, to organize a field crew to measure snow pit density profiles that can be used to constrain density variations across the landscape. The snow pit measurements funded by this project were located on the Shoshone and Bridger-Teton National Forests under special use permits. Fieldwork was conducted between May 24 and June 1, with a total of 6 backcountry fieldwork days (23 person-days).

A total of 36 snow pit profiles were available from the current year (within a few days before the ASO flight). These snow pit data constrain densities from below 9,000 ft. to above 13,000 ft. and from just over 1 ft. of snow depth to more than 19 ft. of snow depth in deep drifts, including several major pits (8-13 ft. deep) at high elevations (11,500-12,600 ft.) and numerous pits in the forest. Observed heterogeneity in bulk (vertically integrated) snow density varied from 0.339 g/cm³ in the shallow forested snowpack to 0.585 g/cm³ in deep drifts at lower elevations.

Using 34 of the 36 snow density measurements (excluding 2 non-representative pits from drift edges), Mountain Hydrology constructed a Bayesian regression model as a function of elevation, snow depth, canopy cover, north slope aspect, and east slope aspect, which explained 77% of total variability and 94% of variability across the 8 snow pits deeper than 2 m. The root-mean-square-error is 0.026 g/cm³, or 6% uncertainty relative to the mean of 0.447 g/cm³. This model was used to infer snow density across the ASO flight domain with the same variables. Multiplying the density map by the depth map produces a spatially complete estimate of snow water equivalent (SWE), as shown on the cover page.

Snow Density Model

Holistic Research to Support Resilient Water Management

SWE Map Results

Across the 2,200 km² (850 mi²) survey domain, the total SWE volume was 355,125 acre-ft. (355 TAF) of liquid water equivalent. The area-averaged mean SWE depth was 20 cm (0.65 ft.). Considering only snow-covered areas, the SWE depth 90th percentile was 125 cm (4.1 ft.) and a 99th percentile of 261 cm (8.6 ft.) at 3 meter horizontal resolution.

The following table gives estimated SWE volumes and area-averaged SWE depths for each sub-watershed:

Watershed	Airborne Snow Survey Date	SWE Volume	Mean SWE Depth	
Torrey Creek	Torrey Creek June 1-2, 2025		18 cm (0.60 ft.)	
Dinwoody Creek	June 1-2, 2025	<mark>39 TAF</mark>	21 cm (0.70 ft.)	
Dry Creek June 1-2, 2025		11 TAF	9 cm (0.30 ft.)	
Meadow Creek June 1-2, 2025		<mark>3 TAF</mark>	3 cm (0.11 ft.)	
Willow Creek	June 1-2, 2025	<mark>3 TAF</mark>	3 cm (0.08 ft.)	
Bull Lake Creek	June 1-2, 2025	77 TAF	20 cm (0.65 ft.)	
N.F. Little Wind R.	June 1-2, 2025	<mark>27 TAF</mark>	11 cm (0.37 ft.)	
S.F. Little Wind R.	June 1-2, 2025	<mark>32 TAF</mark>	17 cm (0.55 ft.)	
Upper Green River	June 1-2, 2025	<mark>84 TAF</mark> (At Roaring Fork confluence)	26 cm (0.85 ft.) (At Roaring Fork confluence)	
Pine Creek	June 1-2, 2025	52 TAF	33 cm (1.07 ft.)	

Note that the area-averaged SWE depths are affected by the position of stream gages, reservoirs, etc., since a larger lowelevation snow-free area will reduce the apparent mean SWE depth for a given watershed. Thus, the SWE volumes are more indicative of the amount of snow stored in a particular watershed.

Note also that the sum of sub-watershed SWE volumes is less than the total surveyed SWE volume because the total survey area extends slightly beyond the bounds of each watershed.

Holistic Research to Support Resilient Water Management

Holistic Research to Support Resilient Water Management

Survey Body Reality

Mountain Hydrology LLC

Holistic Research to Support Resilient Water Management

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecast Summary

The 3 meter SWE map captures the snowpack water storage and distribution on a particular date, but additional variables like rain, evapotranspiration, and groundwater are also important for predicting runoff. The SWE data are aggregated to 90 m resolution and assimilated into the DHSVM-WSF hydrological model using a patented process-based assimilation method (cf. Western Snow Conference proceedings, 2024). Water supply forecasts are generated using a Bayesian ensemble of multiple models with 30-day subseasonal weather forecasts and 40 years of historical climatology (refer to DHSVM-WSF white paper for details: https://mountainhydrology.com/mountainhydrology_wp2_dhsvm-wsf/.

All forecasts listed below are for the June-September forecast period (inclusive), with issue date June 6th, 2024.

Watershed	Forecast Point	Airborne Snow Survey Date	Snowpack Water Storage	Runoff: 90% Exceedance	Runoff: 50% Exceedance	Runoff: 10% Exceedance
Torrey Creek	Gage (Private)	June 2, 2025	18 TAF	22 TAF	28 TAF	34 TAF
Dinwoody Creek	Gage USGS 06221400	June 2, 2025	<mark>39 TAF</mark>	48 TAF	62 TAF	77 TAF
Dry Creek	Canal USGS 06222500	June 2, 2025	11 TAF	10 TAF	15 TAF	20 TAF
Meadow Creek	Canal USGS 06223000	June 2, 2025	<mark>3 TAF</mark>	2.4 TAF	3.6 TAF	5.0 TAF
Willow Creek	Canal USGS 06223500	June 2, 2025	<mark>3 TAF</mark>	2.1 TAF	3.4 TAF	4.9 TAF
Bull Lake Creek	Reservoir USGS 06224000	June 2, 2025	77 TAF	94 TAF	115 TAF	138 TAF
N.F. Little Wind R.	Gage USGS 06228800	June 2, 2025	27 TAF	32 TAF	42 TAF	53 TAF
S.F. Little Wind R.	Reservoir USGS 06228350	June 2, 2025	32 TAF	33 TAF	45 TAF	58 TAF
Upper Green River	Gage USGS 09188500	June 2, 2025	<mark>84 TAF</mark> (At Roaring Fork confluence)	106 TAF (At Gage)	130 TAF (At Gage)	157 TAF (At Gage)
Pine Creek	Gage USGS 09196500	June 2, 2025	<mark>52 TAF</mark>	61 TAF	73 TAF	87 TAF

An exceedance probability of X% indicates that on average over many years, there is roughly an X% chance that the actual volumetric water supply in any particular year will be larger than the forecast exceedance value.

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecasts: Historical Comparison

For contextual interpretation, current forecasts for several key watersheds are shown here in a relative ranking with the most recent decade of observed runoff volumes:

Dinwoody Creek						
Water Year	Water Yield (June – September)	Value Type				
2025	48	Forecast – 90% Exceedance				
2025	62	Forecast – 50% Exceedance				
2024	70	Historical				
2021	72	Historical				
2016	73	Historical				
2025	77	Forecast – 10% Exceedance				
2022	81	Historical				
2018	84	Historical				
2015	85	Historical				
2020	87	Historical				
2019	90	Historical				
2023	93	Historical				
2017	126	Historical				

Bull Lake Creek						
Water Year	Water Yield (June – September)	Value Type				
2025	94	Forecast – 90% Exceedance				
2025	115	Forecast – 50% Exceedance				
2021	120	Historical				
2020	125	Historical				
2016	127	Historical				
2024	130	Historical				
2015	133	Historical				
2025	138	Forecast – 10% Exceedance				
2022	146	Historical				
2018	157	Historical				
2019	172	Historical				
2023	182	Historical				
2017	285	Historical				

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecasts: Historical Comparison

South Fork Little Wind River						
Water Year	Water Yield (June – September)	Value Type				
2025	33 TAF	Forecast – 90% Exceedance				
2020	39 TAF	Historical				
2021	44 TAF	Historical				
2025	45 TAF	Forecast – 50% Exceedance				
2015	49 TAF	Historical				
2024	57 TAF	Historical				
2018	58 TAF	Historical				
2025	58 TAF	Forecast – 10% Exceedance				
2022	59 TAF	Historical				
2016	65 TAF	Historical				
2023	78 TAF	Historical				
2019	79 TAF	Historical				
2017	129 TAF	Historical				

Upper Green River						
Water Year	Water Yield (June – September)	Value Type				
2025	106	Forecast – 90% Exceedance				
2025	130	Forecast – 50% Exceedance				
2021	146	Historical				
2016	155	Historical				
2025	157	Forecast – 10% Exceedance				
2024	170	Historical				
2015	180	Historical				
2022	185	Historical				
2020	208	Historical				
2023	218	Historical				
2019	224	Historical				
2018	248	Historical				
2017	414	Historical				

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecasts: Monthly

Runoff timing is more uncertain than total runoff volume, but monthly values are given here for key watersheds:

Watershed	Month	Runoff: 90% Exceedance	Runoff: 50% Exceedance	Runoff: 10% Exceedance
Dinwoody Creek	June	17 TAF	23 TAF	28 TAF
Dinwoody Creek	July	13 TAF	18 TAF	24 TAF
Dinwoody Creek	Dinwoody Creek August 10 TAF		14 TAF	19 TAF
Dinwoody Creek	September	5 TAF	7 TAF	10 TAF

Watershed	Month	Runoff: 90% Exceedance	Runoff: 50% Exceedance	Runoff: 10% Exceedance
Bull Lake Creek	June	50 TAF	61 TAF	74 TAF
Bull Lake Creek	ke Creek July 21 TAF		28 TAF	35 TAF
Bull Lake Creek	August	12 TAF	17 TAF	22 TAF
Bull Lake Creek	September	6 TAF	9 TAF	14 TAF

Watershed Month		Runoff: 90% Exceedance	Runoff: 50% Exceedance	Runoff: 10% Exceedance	
South Fork Little Wind River	June	22 TAF	30 TAF	39 TAF	
South Fork Little Wind River	July	6 TAF 9 TAF		12 TAF	
South Fork Little Wind River	August	2 TAF	3 TAF	5 TAF	
South Fork Little Wind River	September	2 TAF	3 TAF	4 TAF	

Watershed	Month	Runoff: 90% Exceedance	Runoff: 50% Exceedance	Runoff: 10% Exceedance
Upper Green River	June	61 TAF	74 TAF	89 TAF
Upper Green River	July	21 TAF 27 TAF		36 TAF
Upper Green River	Green River August 12 TAF		16 TAF	23 TAF
Upper Green River	September	8 TAF	12 TAF	16 TAF

Holistic Research to Support Resilient Water Management

Snowpack Analysis

Overall, there is much less snow storage in the Wind River Range compared to the same time last year. Compared to the May 31, 2024, survey, the June 1-2, 2025 survey has:

- 42% less snow storage in the Bull Lake Creek watershed
- 54% less snow storage in the Little Wind River watersheds
- 38% less snow storage in the Green River headwaters

In other words, there is roughly <u>half</u> as much snow stored in the mountains compared to the same timeframe last year. For reference, last year's report can be downloaded here:

https://mountainhydrology.com/snowwatersupplyforecastreport_windriverrange_2024-june/

Summer (June-September) precipitation can vary from approximately 5-20 cm (2-8 inches) of rain across the mountains, which is the same order of magnitude as the area-average snow storage at the start of June this year (20 cm / 8 inches). Thus, uncertainty in the summer precipitation contributes to substantial fractional uncertainty in the total runoff, since future precipitation could be anywhere from 20% to 50% of the total water balance input.

What to watch: summer precipitation trends and subseasonal weather forecasts should help reduce the impact of future precipitation on runoff volume uncertainty over the next 1-2 months. Summer precipitation will have outsized importance for determining total runoff, since this year's snowpack arguably qualifies as a "snow drought."

Forecast Comparison

Operational statistical forecasts are issued by the Natural Resources Conservation Service (NRCS), which are useful for comparison with the physically based DHSVM-WSF forecasts with snow data assimilation provided in this report.

Considering only the June-July forecast period, the NRCS June 1 issue date forecasts indicate the following volumes at standard 90 / 50 / 10% exceedance probability levels:

- 39 / 46 / 53 for Dinwoody Creek, compared to 32 / 41 / 50 TAF from DHSVM-WSF (this report)
- 70 / 87 / 106 for Bull Lake Creek, compared to 74 / 89 / 106 TAF from DHSVM-WSF (this report)
- 119 / 150 / 180 for the Upper Green River, compared to 84 / 101 / 121 TAF from DHSVM-WSF (this report)
- 48 / 63 / 79 TAF for Pine Creek, compared to 53 / 64 / 76 TAF from DHSVM-WSF (this report)

Overall, the NRCS forecasts show a similar range of likely below-normal conditions for key watersheds, with particularly similar values in Dinwoody, Bull Lake, and Pine Creek. However, the NRCS forecast is much higher (+42% to +49%) in the Upper Green River. This could be a result of snow drought conditions that are not adequately reflected in low-elevation monitoring station data. As such, the physically based snow data assimilation forecast system deployed here indicates a potentially underappreciated risk of significant drought conditions in the Green River headwaters.

Holistic Research to Support Resilient Water Management

DHSVM-WSF Comparison to Empirical Estimates

Finally, a back-of-the-envelope empirical forecast can be derived by calculating either the difference or ratio of runoff in 2024 relative to the 2024 SWE map, and extrapolating these relationships (from last year) to the current year.

The table below compares different back-of-the-envelope scenarios for the relationship between snow water equivalent (SWE) and cumulative runoff (Q) for the June-September period.

Important: these back-of-the-envelope metrics do not account for variable weather! The 2024 summer was remarkably dry, with very little precipitation. Thus, the DHSVM-WSF forecast medians are considerably higher than the simple Q vs. SWE relationships, because historical climatology shows that summer precipitation is likely to contribute a substantial fraction of the total runoff.

Watershed	SWE Volume: May 31, 2024	SWE Volume: June 2, 2025	Relation 1: Q / SWE, 2024	Relation 2: Q – SWE, 2024	Relation 1: Q pred. 2025	Relation 2: Q pred. 2025	DHSVM- WSF Median Q pred. 2025
Torrey Creek	<mark>29 TAF</mark>	18 TAF	1.0	1 TAF	18 TAF	19 TAF	28 TAF
Dinwoody Creek	<mark>63 TAF</mark>	<mark>39 TAF</mark>	1.1	7 TAF	43 TAF	46 TAF	62 TAF
Dry Creek	<mark>22 TAF</mark>	11 TAF	Q Not Meas.	Q Not Meas.	-	-	15 TAF
Meadow Creek	<mark>7 TAF</mark>	<mark>3 TAF</mark>	Q Not Meas.	Q Not Meas.	-	-	3.6 TAF
Willow Creek	<mark>9 TAF</mark>	<mark>3 TAF</mark>	Q Not Meas.	Q Not Meas.	-	-	3.4 TAF
Bull Lake Creek	133 TAF	77 TAF	0.98	-3 TAF	75 TAF	74 TAF	115 TAF
N.F. Little Wind R.	<mark>64 TAF</mark>	<mark>27 TAF</mark>	Q Not Meas.	Q Not Meas.	-	-	42 TAF
S.F. Little Wind R.	<mark>65 TAF</mark>	32 TAF	0.88	-8 TAF	28 TAF	24 TAF	45 TAF
Upper Green River	135 TAF (At Roaring Fork confluence)	<mark>84 TAF</mark> (At Roaring Fork confluence)	1.26 (At Gage)	35 TAF (At Gage)	106 TAF (At Gage)	119 TAF (At Gage)	130 TAF (At Gage)
Pine Creek	<mark>76 TAF</mark>	<mark>52 TAF</mark>	0.94	-5 TAF	49 TAF	47 TAF	73 TAF

MountainHydrology.com

Holistic Research to Support Resilient Water Management

DHSVM-WSF Peak Flows

The low snowpack storage and abnormally warm late-May conditions have already led to elevated flows, and some watersheds may have already reached peak flow, while for other watersheds, the peak flow is expected in the next 1-2 weeks. The following plots summarize projected daily streamflow for key sub-watersheds. Note that streamflow magnitude and timing on a daily timestep is much more uncertain than seasonal cumulative volumes, and these projections are subject to change based on updated weather forecasts.

Dinwoody-Ck-Nr-Burris DHSVM-WSF Streamflow Ensemble Issue Date: 2025-06-06

Holistic Research to Support Resilient Water Management

DHSVM-WSF Peak Flows

© 2025 <u>Mountain Hydrology LLC</u> Released under <u>CC BY-NC-SA 4.0</u>

Jun-15-Jun-16-

Jun-14

Jun-17-Jun-18Jun-19-

Jun-20-

Jun-21-Jun-22Jun-23-

Jun-24 Jun-25 Jun-26 Jun-27 Jun-29-

Jun-30

Jun-10-

-80-nuL

Jun-07

Jun-02-Jun-03-

Jun-01

Jun-05-

Jun-04

Jun-12-Jun-13-

Jun-11

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecast: Torrey Creek

HE POILS TAP 50-48.3 TAF 25-25-Jun-2025 Jul-2025 Aug-2025 Sep-2025 Oct-2025

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecast: Dry Creek

DHSVM-WSF Forecast: Meadow Creek

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecast: Willow Creek

DHSVM-WSF Forecast: Bull Lake Creek

Holistic Research to Support Resilient Water Management

Holistic Research to Support Resilient Water Management

DHSVM-WSF Forecast: Upper Green River

